All District Engineers Michael L. Hine Special Provision for Polyurea Pavement Marking January 9, 2004 This special provision was developed by the Bureau of Operations. It should be inserted into all contracts requiring poluyurea pavement markings for lane lines. The districts should include the BDE Check Sheet marked with the applicable special provisions for the April 23, 2004 and subsequent lettings. The Project Development and Implementation Section will include the paper copy in the contract. This special provision will be available on the transfer directory January 9, 2004. 80119m ## POLYUREA PAVEMENT MARKING (BDE) Effective: April 1, 2004 <u>Description</u>. This work shall consist of furnishing and applying pavement marking lines. The type of polyurea pavement marking applied will be determined by the type of reflective media used. Polyurea Pavement Marking Type I shall use glass beads as a reflective media. Ployurea Pavement Marking Type II shall use a combination of composite reflective elements and glass beads as a reflective media. Polyurea-based liquid pavement markings shall only be applied by Contractors on the list of Approved Polyurea Contractors maintained by the Engineer of Operations and in effect on the date of advertisement for bids. <u>Materials</u>. Materials shall meet the following requirements: - (a) Polyurea Pavement Marking. The polyurea pavement marking material shall consist of 100 percent solid two part system formulated and designed to provide a simple volumetric mixing ratio of two components (must be two or three volumes of Part A to one volume of Part B). No volatile or polluting solvents or fillers will be allowed. - (b) Pigmentation. The pigment content by weight of component A shall be determined by low temperature ashing according to ASTM D 3723. The pigment content shall not vary more than ± two percent from the pigment content of the original qualified paint. White Pigment shall be Titanium Dioxide meeting ASTM D 476 Type II, Rutile. Yellow Pigment shall be an Organic Yellow and contain no heavy metals. - (c) Environmental. Upon heating to application temperature, the material shall not exude fumes which are toxic or injurious to persons or property. - (d) Daylight Reflectance. The daylight directional reflectance of the cured polyurea material (without reflective media) shall be a minimum of 80 percent (white) and 50 percent (yellow) relative to magnesium oxide when tested using a color spectrophotometer with a 45 degrees circumferential /zero degrees geometry, illuminant C, and two degrees observer angle. The color instrument shall measure the visible spectrum from 380 to 720 nm with a wavelength measurement interval and spectral bandpass of 10 nm. In addition, the color of the yellow polyurea shall visually match Color Number 33538 of Federal Standard 595a with chromaticity limits as follows: | X | 0.490 | 0.475 | 0.485 | 0.539 | |---|-------|-------|-------|-------| | Y | 0.470 | 0.438 | 0.425 | 0.456 | (e) Weathering Resistance. The polyurea marking material, when mixed in the proper ratio and applied at 0.35 to 0.41 mm (14 to 16 mils) wet film thickness to an aluminum alloy panel (Federal Test Std. No. 141, Method 2013) and allowed to cure for 72 hours at room temperature, shall be subjected to accelerated weathering for 75 hours. The accelerated weathering shall be completed by using the light and water exposure apparatus (fluorescent UV - condensation type) and tested according to ASTM G 53. The cycle shall consist of four hours UV exposure at 50 °C (122 °F) and four hours of condensation at 40 °C (104 °F). UVB 313 bulbs shall be used. At the end of the exposure period, the material shall show no substantial change in color or gloss. - (f) Dry Time. The polyurea pavement marking material, when mixed in the proper ratio and applied at 0.35 to 0.41 mm (14 to 16 mils) wet film thickness and with the proper saturation of reflective media, shall exhibit a no-tracking time of ten minutes or less when tested according to ASTM D 711. - (g) Adhesion. The catalyzed polyurea pavement marking materials when applied to a 100 x 100 x 50 mm (4 x 4 x 2 in.) concrete block, shall have a degree of adhesion which results in a 100 percent concrete failure in the performance of this test. The concrete block shall be brushed on one side and have a minimum strength of 24,100 kPa (3500 psi). A 50 mm (2 in.) square film of the mixed polyurea shall be applied to the brushed surface and allowed to cure for 72 hours at room temperature. A 50 mm (2 in.) square cube shall be affixed to the surface of the polyurea by means of an epoxy glue. After the glue has cured for 24 hours, the polyurea specimen shall be placed on a dynamic testing machine in such a fashion so that the specimen block is in a fixed position and the 50 mm (2 in.) cube (glued to the polyurea surface) is attached to the dynamometer head. Direct upward pressure shall be slowly applied until the polyurea system fails. The location of the break and the amount of concrete failure shall be recorded. - (h) Hardness. The polyurea pavement marking materials when tested according to ASTM D 2240, shall have a shore D hardness of between 70 and 100. Films shall be cast on a rigid substrate at 0.35 to 0.41 mm (14 to 16 mils) in thickness and allowed to cure at room temperature for 72 hours before testing. - (i) Abrasion. The abrasion resistance shall be evaluated according to ASTM D 4060 using a Taber Abrader with a 1,000 gram load and CS 17 wheels. The duration of the test shall be 1,000 cycles. The loss shall be calculated by difference and be less than 120 mgs. The tests shall be run on cured samples of polyurea material which have been applied at a film thickness of 0.35 to 0.41 mm (14 to 16 mils) to code S-16 stainless steel plates. The films shall be allowed to cure at room temperature for at least 72 hours and not more than 96 hours before testing. - (j) Reflective Media. The reflective media shall meet the following requirements: - (1) Type I The glass beads shall meet the requirements of Article 1095.07 of the Standard Specifications and the following requirements: - a. First Drop Glass Beads The first drop glass beads shall be tested by the standard visual method of large glass spheres adopted by the Department. The beads shall have a silane coating and meet the following sieve requirements: | Sieve
Size | U.S. Standard
Sieve Number | % Passing
(By Weight) | |---------------|-------------------------------|--------------------------| | 1.70 mm | 12 | 95-100 | | 1.40 mm | 14 | 75-95 | | 1.18 mm | 16 | 10-47 | | 1.00 mm | 18 | 0-7 | | 850 µm | 20 | 0-5 | - b. Second Drop Glass Beads. The second drop glass beads shall meet the requirements of Article 1095.07 of the Standard Specifications for Type B. - (2) Type II The combination of microcrystalline ceramic elements and glass beads shall meet the following requirements: - a. First Drop Glass Beads. The first drop glass beads shall meet the following requirements: - 1. Composition. The elements shall be composed of a titania opacified ceramic core having clear and or yellow tinted microcrystalline ceramic beads embedded to the outer surface. - 2. Index of Refraction. All microcrystalline reflective elements embedded to the outer surface shall have an index of refraction of 1.8 when tested by the immersion method. - 3. Acid Resistance. A sample of microcrystalline ceramic beads supplied by the manufacturer, shall show resistance to corrosion of their surface after exposure to a one percent solution (by weight) of sulfuric acid. Adding 5.7 ml (0.2 oz) of concentrated acid into the water shall make the one percent acid solution. This test shall be performed by taking a 25 x 50 mm (1 x 2 in.) sample and adhering it to the bottom of a glass tray and placing just enough acid solution to completely immerse the sample. The tray shall be covered with a piece of glass to prevent evaporation and allow the sample to be exposed for 24 hours under these conditions. The acid solution shall be decanted (do not rinse, touch, or otherwise disturb the bead surfaces) and the sample dried while adhered to the glass tray in a 66 °C (150 °F) oven for approximately 15 minutes. Microscope examination (20X) shall show no white (corroded) layer on the entire surface. - b. Second Drop Glass Beads. The second drop glass beads shall meet the requirements of Article 1095.07 of the Standard Specifications for Type B or the following manufacturer's specification: - 1. Sieve Analysis. The glass beads shall meet the following sieve requirements: | Sieve | U.S. Standard | % Passing | |--------|---------------|-------------| | Size | Sieve Number | (By Weight) | | 850 μm | 20 | 100 | | 600 μm | 30 | 75-95 | | 300 μm | 50 | 15-35 | | 150 μm | 100 | 0-5 | The manufacturer of the glass beads shall certify that the treatment of the glass beads meets the requirements of the polyurea manufacturer. - Imperfections. The surface of the glass beads shall be free of pits and scratches. The glass beads shall be spherical in shape and shall contain a maximum of 20 percent by weight of irregular shapes when tested by the standard method using a vibratile inclined glass plate as adopted by the Department. - 3. Index of Refraction. The index of refraction of the glass beads shall be a minimum of 1.50 when tested by the immersion method at 25 °C (77 °F). - (k) Packaging. Microcrystalline ceramic reflective elements and glass beads shall be delivered in approved moisture proof bags or weather resistant bulk boxes. Each carton shall be legibly marked with the manufacturer, specifications and type, lot number, and the month and year the microcrystalline ceramic reflective elements and/or glass beads were packaged. The letters and numbers used in the stencils shall be a minimum of 12.7 mm (1/2 in.) in height. - (1) Moisture Proof Bags. Moisture proof bags shall consist of at least five ply paper construction unless otherwise specified. Each bag shall contain 22.7 kg (50 lb) net. - (2) Bulk Weather Resistance Boxes. Bulk weather resistance boxes shall conform to Federal Specification PPP-8-640D Class II or latest revision. Boxes are to be weather resistant, triple wall, fluted, corrugated-fiber board. Cartons shall be strapped with two metal straps. Straps shall surround the outside perimeter of the carton. The first strap shall be located approximately 50 mm (2 in.) from the bottom of the carton and the second strap shall be placed approximately in the middle of the carton. All cartons shall be shrink wrapped for protection from moisture. Cartons shall be lined with a minimum 4 mil polyester bag and meet Interstate Commerce Commission requirements. Cartons shall be approximately 1 x 1 m (38 x 38 in.), contain 910 kg (2000 lb) of microcrystalline ceramic reflective elements and/or glass beads and be supported on a wooden pallet with fiber straps. - (I) Packaging. The material shall be shipped to the job site in substantial containers and shall be plainly marked with the manufacturer's name and address, the name and color of the material, date of manufacture, and batch number. - (m) Verification. Prior to approval and use of the polyurea pavement marking materials, the manufacturer shall submit a notarized certification of an independent laboratory, together with the results of all tests, stating these materials meet the requirements as set forth herein. The certification test report shall state the lot tested, manufacturer's name, brand name of polyurea and date of manufacture. The certification shall be accompanied by one 1/2 L (1 pt) samples each of Part A and Part B. Samples shall be sent in the appropriate volumes for complete mixing of Part A and Part B. After approval by the Department, certification by the polyurea manufacturer shall be submitted for each batch used. New independent laboratory certified test results and samples for testing by the Department shall be submitted any time the manufacturing process or paint formulation is changed. All costs of testing (other than tests conducted by the Department) shall be borne by the manufacturer. - (n) Acceptance samples. Acceptance samples shall consist of one 1/2 L (1 pt) samples of Part A and Part B, of each lot of paint. Samples shall be sent in the appropriate volumes for complete mixing of Part A and Part B. The samples shall be submitted to the Department for testing, together with a manufacturer's certification. The certification shall state the formulation for the lot represented is essentially identical to that used for qualification testing. All, acceptance samples will be taken by a representative of the Department. The polyurea pavement marking materials shall not be used until tests are completed and they have met the requirements as set forth herein. - (o) Material Retainage. The manufacturer shall retain the test sample for a minimum of 18 months. Equipment. The polyurea pavement marking compounds shall be applied through equipment specifically designed to apply two component liquid materials, glass beads and/or reflective elements in a continuous and skip-line pattern. The two-component liquid materials shall be applied after being accurately metered and then mixed with a static mix tube or airless impingement mixing guns. The static mixing tube or impingement mixing guns shall accommodate plural component material systems that have a volumetric ratio of 2 to 1 or 3 to 1. This equipment shall produce the required amount of heat at the mixing head and gun tip and maintain those temperatures within the tolerances specified. The guns shall have the capacity to deliver materials from approximately 5.7 to 11.4 L/min (1.5 to 3 gal/min) to compensate for a typical range of application speeds of 10 to 13 km/h (6 to 8 mph). The accessories such as spray tip, mix chamber, and rod diameter shall be selected according to the manufacturer's specifications to achieve proper mixing and an acceptable spray pattern. The application equipment shall be maneuverable to the extent that straight lines can be followed and normal curves can be made in a true arc. This equipment shall also have as an integral part of the gun carriage, a high pressure air spray capable of cleaning the pavement immediately prior to making application. The equipment shall be capable of spraying both yellow and white polyurea, according to the manufacturer's recommended proportions and be mounted on a truck of sufficient size and stability with an adequate power source to produce lines of uniform dimensions and prevent application failure. The truck shall have at least two polyurea tanks each of 415 L (110 gal) minimum capacity and be equipped with hydraulic systems and agitators. It shall be capable of placing stripes on the left and right sides and placing two lines on a three-line system simultaneously with either line in a solid or intermittent pattern, in yellow or white, and applying the appropriate reflective media according to manufacturer's recommendations. All guns shall be in full view of operations at all times. The equipment shall have a metering device to register the accumulated installed quantities for each gun, each day. Each vehicle shall include at least one operator who shall be a technical expert in equipment operations and polyurea application techniques. Certification of equipment shall be provided at the pre-construction conference. The mobile applicator shall include the following features: - (a) Material Reservoirs. The applicator shall provide individual material reservoirs, or space for the storage of Part A and Part B of the resin composition. - (b) Heating Equipment. The applicator shall be equipped with heating equipment of sufficient capacity to maintain the individual resin components at the manufacturer's recommended temperature of ±2.8 °C (±5 °F) for spray application. - (c) Dispensing Equipment. The applicator shall be equipped with glass bead and/or reflective element dispensing equipment. The applicator shall be capable of applying the glass beads and/or reflective elements at a rate and combination indicated by the manufacturer. - (d) Volumetric Usage. The applicator shall be equipped with metering devices or pressure gauges on the proportioning pumps as well as stroke counters to monitor volumetric usage. Metering devices or pressure gauges and stroke counters shall be visible to the Engineer. - (e) Pavement Marking Placement. The applicator shall be equipped with all the necessary spray equipment, mixers, compressors and other appurtenances to allow for the placement of reflectorized pavement markings in a simultaneous sequence of operations. The Contractor shall provide an accurate temperature-measuring device(s) that shall be capable of measuring the pavement temperature prior to application of the material, the material temperature at the gun tip and the material temperature prior to mixing. ## CONSTRUCTION REQUIREMENTS <u>General</u>. The pavement shall be cleaned by a method approved by the Engineer to remove all dirt, grease, glaze or any other material that would reduce the adhesion of the markings with minimum or no damage to the pavement surface. New PCC pavements shall be air-blast-cleaned to remove all latents. Widths, lengths, and shapes of the cleaned surface shall be of sufficient size to include the full area of the specified pavement marking to be placed. The cleaning operation shall be a continuous moving operation process with minimum interruption to traffic. Markings shall be applied to the cleaned surfaces on the same calendar day. If this cannot be accomplished, the surface shall be re-cleaned prior to applying the markings. No markings shall be applied until the Engineer approves the cleaning. The pavement markings shall be applied to the cleaned road surface, during conditions of dry weather and subsequently dry pavement surfaces at a minimum uniform wet thickness of 0.4 mm (15 mils) according to the manufacturer's installation instructions. On new bituminous course surfaces the pavement markings shall be applied at a minimum uniform wet thickness of 0.5 mm (20 mils). The application of and combination of reflective media (glass beads and/or reflective elements) shall be applied at a rate specified by the manufacturer. At the time of installation the pavement surface temperature and the ambient temperature shall be above 4 °C (40 °F) and rising. The pavement markings shall not be applied if the pavement shows any visible signs of moisture or it is anticipated that damage causing moisture, such as rain showers, may occur during the installation and set periods. The Engineer will determine the atmospheric conditions and pavement surface conditions that produce satisfactory results. Using the application equipment, the pavement markings shall be applied in the following manner, as a simultaneous operation: - (a) The surface shall be air-blasted to remove any dirt and residue. - (b) The resin shall be mixed and heated according to manufacturer's recommendations and sprayed onto the pavement surface. The edge of the center line or lane line shall be offset a minimum distance of 50 mm (2 in.) from a longitudinal crack or joint. Edge lines shall be approximately 50 mm (2 in.) from the edge of pavement. The finished center and lane lines shall be straight, with the lateral deviation of any 3 m (10 ft) line not to exceed 25 mm (1 in.). <u>Notification</u>. The Contractor shall notify the Engineer 72 hours prior to the placement of the markings in order that he/she can be present during the operation. At the time of notification, the Contractor shall provide the Engineer the manufacturer and lot numbers of polyurea and reflective media that will be used. <u>Inspection</u>. The polyurea pavement markings will be inspected following installation according to Article 780.10 of the Standard Specifications, except, no later than December 15, and inspected following a winter performance period that extends 180 days from December 15. <u>Method of Measurement</u>. This work will be measured for payment in place, in meters (feet). Double yellow lines will be measured as two separate lines. <u>Basis of Payment</u>. This work will be paid for at the contract unit price per meter (foot) for POLYUREA PAVEMENT MARKING TYPE I – LINE of the line width specified or for POLYUREA PAVEMENT MARKING TYPE II – LINE of the line width specified.